Air Emissions Recycling Flow Chart

Captured mixed emissions: CO2, HAP, Particulate

fractional condensation, sedimentation

CO ₂ & Traces <liquid &="" hap<metals="" particulates<="" th=""></liquid>			
	•	•	
. co~0.0	007% .		
. NOx ~ 40	0 ppm .		
Stored CO ₂ (> 300K TPY)	formaldehyde, benzene		osive orrosive
	fuel > 30 TPY	land . civil p	fill & projects
	chemical scavengers	other scavengers	

Purification and distribution to:

- * Compressed CO₂ markets
- * Year-round hydroponic agriculture
- * Bio-tech innovations

AER® Strategic Components

- A. Establishing market demands: Determine recurring market demand for AER products / derivatives.
- 1) CO2 for compressed air distributors
- 2) CO2 for hydroponic agriculture systems
- 3) CO2 for bio-photo-syn tech derivatives

B. Marshaing feasible technology

- Improved burner efficiencies. stack channeling, storage, fractionation, purification. packaging
- 2) Growth systems' CO2 concentrates: regulation
- 3) Linkage & draw-down of public waste H2O systems
- 4) Bio-tech: solar reactor synthesis & combination
- C. Promoting commerce: Engage local public and private capital interests

D. Basic & applied research

- 1) Hydroponic agri / horticulture systems
- 2) CO2 photosynthesis & recombination (pharmaceuticals, complex polysaccharides--fibers)
- 3) Industrial burner efficiencies
- E. Benefits: Cost-effective to public health and operators