Science Model of Consumer Behavior on Direct-to-consumer Genetic Testing

Nicole Germino, MPH 1,2 and Kee Chan, PhD * 1,2

1 Boston University, Department of Health Sciences, Sargent College of Health and Rehabilitation Sciences, Boston, MA 02215
2 Boston University, School of Public Health, Department of Epidemiology, Boston, MA 02118

ABSTRACT

Despite the rapidly decreasing cost and increase in the range of direct-to-consumer (DTC) genetic testing services, uptake and utilization of these services has been slow compared with similar technologies. We examine the potential consumer trends of DTC genetic testing using the Theory of Diffusion of Innovation and the Bass Model to simulate consumer purchasing trends with respect to internal and external influences such as word-of-mouth dissemination and regulatory trends. By simulating these influences on the adoption of DTC genetic testing in the consumer market, stakeholders will be better able to evaluate the need for changes in policy and influences in consumer demand for DTC genetic testing products. This study will provide model on how DTC genetic testing can project consumer behavior, expectations and motivations towards purchasing the service and consequently their reaction to their results.

OBJECTIVE

To examine the potential consumer trends of direct-to-consumer genetic testing using the theory of diffusion of innovation and the Bass model to simulate consumer purchasing trends with respect to internal and external influences leading to adoption or resistance to direct-to-consumer (DTC) genetic testing.

HYPOTHESES

1) Personalized genomic testing will continue and increase as Sigmoidal curve as direct-to-consumer platform.
2) Personalized genomic testing will continue but plateau at “time” point.
3) Personalized genomic testing will continue a linear curve.

RESULTS

Diffusion of Innovation theory also takes into account the characteristics and needs of the potential adopter. The Bass model is an empirical representation that describes the adoption process and diffusion of new technology products with respect to external and internal forces. Equation used:
\[f(t) = p + \frac{q}{m} Y(t) \]

Where:
- \(f(t) \) = proportion of the potential market that adopts at time \(t \).
- \(1 - F(t) \) = likelihood that a customer will adopt the innovation at exactly time \(t \).
- \(p \) = new adoptions due to influences outside the social network.
- \(q \) = the number of new adopters in proportion to the number of prior adopters.
- \(m \) = number of members which word-of-mouth from past adopters drives new adoptions.

METHODS

The Bass model is an empirical representation that describes the adoption process and diffusion of new technology products with respect to external and internal forces. Equation used:

FRAMEWORK

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Relative advantage:</td>
<td>With the exception of some companies, DTC genetic testing offers testing directly to consumers, thereby circumventing and avoiding the need for approval by physician.</td>
<td>Expensive; not covered by insurance.</td>
</tr>
<tr>
<td>3. Complexity:</td>
<td>Easy to use saliva kit to send for sampling.</td>
<td>Results may be misinterpreted without professional guidance or genetic counseling.</td>
</tr>
<tr>
<td>4. Triability:</td>
<td>Saliva kits are sent to consumers with instructions.</td>
<td>Samples may be mixed up.</td>
</tr>
</tbody>
</table>

CONCLUSIONS

- Genetic testing may help improve health and lifestyle choices and increase preventive screening.
- With the ease and accessibility of the internet, consumer may have 'new' opportunities to be engaged in personalized medicine.