Effects of an Evidence-Based Falls-Risk Reduction Program on Physical Activity and Falls Efficacy among Oldest-Old Adults

Jinmyoung Cho, PhD
Matthew Lee Smith, PhD, MPH, CHES
SangNam Ahn, PhD, MPSA
Keonyeop Kim, MD, PhD
Marcia G. Ory, PhD, MPH

Acknowledgement
The following personal financial relationships with commercial interests relevant to this presentation existed during the past 12 months: “No relationships to disclose”

Background
• Oldest-old adults: 85 years and older
• Population of oldest-old adults
 ▪ Fastest growing segments of the American population
 ▪ Increase from 5.7 million to 19 million by 2050
• More functional limitations, less physical activity, higher fear of falling, lower levels of falls efficacy
A Matter of Balance (AMOB)
Falls-Risk Reduction Program

- Evidence-based activity program targeting community-dwelling seniors
 - Incorporates the cognitive-behavioral theories
 - Intended to reduce the fear of falling & increase physical activity levels

- Participants vs. control group
 - Falls self-efficacy & falls management
 - Baseline vs. 6 weeks & 12 months

Purpose of Study

- To assess the changes in falls efficacy and physical activity from baseline to post-intervention
- To examine the interaction effect between physical activity improvement and time (baseline and post-intervention) on falls efficacy

Participants

- Assessed for eligibility (n = 3,276)
- Excluded (n = 2,803)
 - Not meeting inclusion criteria: younger than 85 yrs
- Meeting inclusion criteria (n = 473)
- Allocated to final analysis (n = 260)
- Not completed post intervention (n = 213)
- Completed post intervention (n = 260)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percentage</th>
<th>Age (mean ± SD)</th>
<th>Sex</th>
<th>Ethnicity</th>
<th>Education Levels</th>
<th>Number of sessions attended</th>
<th>Number of chronic conditions</th>
<th>Avg. days of physically active (0-7)</th>
<th>Avg. score of falls efficacy scale (5-20)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>87.84 ± 2.84</td>
<td>Male</td>
<td>White</td>
<td>Less than High School</td>
<td>Less than 5 sessions</td>
<td>1.64 ± 1.14</td>
<td>3.55 ± 2.56</td>
<td>13.58 ± 3.92</td>
</tr>
</tbody>
</table>
Hypothesized Model

Covariates:
- Age
- Sex
- Living status
- Ethnicity
- Education
- Number of chronic conditions

Physical activity

AMOB/VLL falls-risk reduction program

Falls efficacy

Measures

- **Personal characteristics:** age, sex, race/ethnicity, education, living status, and number of chronic conditions
- **Falls Efficacy Scale:** Five items from Tennstedt et al. (1998)
 - Can you find a way to get up if you fall
 - Can you find a way to reduce falls
 - Can you protect yourself if you fall
 - Can you increase your physical strength
 - Can you become more steady on your feet
- **Physical activity:** the number of days physically active (e.g., brisk walking, bicycling, vacuuming, gardening, or anything else that causes one to breathe faster) in the previous seven days

Analyses

- **Repeated Measures Analysis of Covariates (ANCOVA)**
- **SAS Proc Mixed**
- **Two models** compared:
 - Model1: Personal characteristics & Time
 - Model2: Personal characteristics, Time, Physical activity improvement, Time* Physical activity improvement
Results

• Change in Falls Efficacy (Model 1)
 ▪ Significant increases in falls efficacy between baseline and post-intervention ($\beta = 1.98, p < .001$)

• Relationship Between Physical Activity Improvement and Falls Efficacy (Model 2)
 ▪ Significant increases in falls efficacy among physical activity improvement group between baseline and post-intervention ($\beta = 1.43, p < .05$)

Limitations

• Self-reported data
• One geographic region of the United States (i.e., Texas)
• Voluntary participation
• Measurement of physical activity
Implications and Future Research

• Falls-risk reduction programs should be developed or modified to specifically target different age groups (e.g., younger than 85 years old vs. 85 years old and over).
• Need detailed examination about the relationship between physical activity and other types of functioning (e.g., dementia).

Conclusions

• Support the effectiveness of evidence-based programs for reducing falls efficacy among oldest-old participants
• Translational research about dissemination and implementation of evidence-based programs is recommended to enhance intervention strategies for the oldest-old population