Incidence of Coronary Heart Disease in Relation to Lifetime Exposure to Inorganic Arsenic in Drinking Water in Colorado

> Presenter: Katherine A James PhD University of Colorado, Denver Abstract number: 251703

Presenter Disclosures

■ No relationships to disclose

Acknowledgements

- I would like to acknowledge my dissertation committee and co-authors: Dr. Tim Byers, Dr. Jaymie Meliker, Dr. John Hokanson, Dr. Gary Zerbe, Dr. Barbara Buttenfield, and Dr. Julie Marshall
- I would like to thank Dr. Richard Hamman, PI for the San Luis Valley Diabetes Study for use of the San Luis Valley Diabetes Study Data.
- I would like to thank Laurie Peterson-Wright and the Colorado Department of Public Health and Environment for the extensive laboratory analysis completed for this research.

Objectives

- Characterize the spatial distribution of inorganic arsenic in groundwater in the San Luis Valley.
- Estimate exposure to inorganic arsenic in drinking water based on residential and occupational history and water consumption combined with predicted inorganic arsenic levels in drinking water.
- Validate predicted exposure to inorganic arsenic in drinking water with speciated arsenic concentrations in concurrently collected urine samples.
- Investigate the association between inorganic arsenic exposure in drinking water and CHD

Background

- Research in areas with high (>1000μg/L) inorganic arsenic levels in drinking water (Taiwan, Bangladesh, Mongolia) have found a positive association with CHD.*
- Research in areas with low-level inorganic arsenic levels in drinking water (MI, NH, NV) have been inconclusive.**
- Limitations of past research
 - Study design (ecologic and cross-sectional)
 - Geographic, grouped or ecologic exposure assessments
 - Non-standardized outcome definition (self-report, death certificate)

Strengths of this Study

- Large cohort (n=1351) with longitudinal clinical data
- Established presence of research in community
- Variable levels of arsenic in drinking water
- Little out migration
- Standardized criteria disease diagnosis

^{*}Chen, 1996; Rahman, 1999; Wang, 2002; Tseng 2003

^{**}Engle, 1994; Lewis, 1999; Zierold, 2004; Meliker, 2007

San Luis Valley, Colorado

- Largest mountain desert with deep aquifer ~3500ft
- Arsenic levels range from non-detected to 300 µg/L
- Drinking Water
 - 100% from groundwater
 - **-** ~46,000 residents
 - 45% private wells
 - 55% public supply

Study Population-San Luis Valley Diabetes Study

- Population-based study of risk factors for diabetes in Hispanic and non-Hispanic Whites
- Residents of Alamosa and Conejos counties
- Aged 20-74
- Baseline clinic visit (1984-1988)
 - •clinical, behavioral, and demographic data
- •2 or 3 follow-up clinic visits through 1992
- Vital status thru 1998

Study Design

- Case-Cohort Design
- **■** Cohort (n=555)
 - Sample size based on preliminary data collected to estimate effect size of 1.4 with a power of 80 percent
- Case: any new CHD event from baseline visit thru 1998 (n=96)
 - CHD event defined as any of the following: myocardial infarction, cerebrovascular surgery, angioplasty, ischemic heart disease, or an ECG MN code 1.1-1.2
 - Confirmation by a three-member physician committee

Data Collection

- SLVDS data
 - Longitudinal demographic, behavioral, and clinical data
 - Residential history back to 1975
 - Birth city and state
 - Occupation
 - Average water intake
- Interview (n=357 participants)
 - Residential and occupational location history prior to 1975
 - Historical water consumption patterns
- Secondary data sources (n=198)
 - Residential history county clerk records
 - Water consumption rates -- EPA estimated ingestion rates by age

Arsenic Data

- Private Wells (n=595 locations, 4126 samples)
 - **1**961-2008
 - Arsenic range was non detectable to 300 μg/l; mean=15.5 μg/l
 - Primary water data (n=247 locations, n=247 samples)
 - Collected from kitchen tap during interview
 - Analyzed at chemistry laboratory of CO Dept. Public Health and Environment
 - Secondary water data (n=348 locations, n=3879 samples)
 - Federal agencies; USGS, EPA, and BoR
 - Past research in SLV; Drinking Water Exposures Rocky Mountain States
- Public Water (n=10 water supply districts, n=188 samples)

Predicting Inorganic Arsenic Concentrations in Drinking Water

- Temporal Stability
 - Naturally occurring arsenic is stable over long periods of time (Steinmaus, 2004; Focazio, 2000)
 - Replicated analysis in SLV
 - 170 wells with 4 to 25 samples collected over 20 years
 - Results found a significant correlation of arsenic concentrations over 5 and 10 year periods (r=0.88, r=0.87 respectively)
 - Conclude that inorganic arsenic concentrations are stable over long periods of time in the SLV
- Spatial Variation
 - Complex geospatial modeling
 - Mean arsenic concentration at each well location (n=595)

Geospatial Modeling

- Ordinary Kriging in GS+® Software
 - Predicts arsenic concentrations over the entire study area
 - A 10% random sample of wells were withheld from the model as a validation dataset (n=56)
- Predicted arsenic concentrations were significantly correlated with observed values (r=0.740) in the validation dataset

Exposure Matrix

- Record for each year of life per subject (n=41,639)
- Arsenic concentration at home (predicted or observed)
- Water intake in liters
- Arsenic concentration at employment/school (predicted)
- Water intake in liters at employment/school
- Locations out of the valley
 - Mean arsenic concentrations for city and state (NRC, 2000)
 - Outside of US 3.0 μg/L (Meliker, 2007)
 - Unknown city or state national average of 3.0 µg/L (Meliker, 2007)
- Calculated Doses
 - Residential Dose = arsenic conc μ g/L x Water intake L
 - Total Dose = residential dose + employment dose

Identifying the Most Accurate Exposure Estimate

- Three estimates of exposure in the matrix
 - Residential arsenic concentration
 - Residential arsenic dose
 - Total Dose
- Urine is a biomarker for recent arsenic exposure
- Spot urine samples collected at baseline clinic visit and frozen at −80 °C for 25 years
- Analyzed for total arsenic and metabolic species
 - Laboratory method: Inductively Coupled Plasma Mass Spectrometry
 - All species concentrations were creatinine corrected.

Arsenic Exposure Estimate

- Residential arsenic concentrations explained the most variability in urinary arsenic concentrations adjusted for creatinine levels.
 - Observed arsenic concentrations (R²=0.34)
 - Predicted arsenic concentrations (R²=0.40)
- Exposure was defined as time weighted average (TWA):

```
TWA = \Sigma(C) / T \Sigma(C) = \text{Cumulative arsenic concentration at residence}(\mu g / L) T = \text{Total time (years)} TWA = (\mu g / L \text{-year})
```

Association Statistical Methods

- Cox proportional hazards model (modified for case-cohort design with robust variance estimator)
- Adjusted for known risk factors
 - Water consumption level
 - Age, Race, Gender, income
 - Family history, BMI, diabetes status
 - Alcohol consumption, smoking, physical activity
 - Lipid levels (LDL, HDL, triglycerides)

		Non-Cases	CHD cases
	0000	N-459	N-96
Age (baseline) (median, IQR)		57 (46, 64)	64 (57.0, 69.0)
Race	Whate	262 (53%)	53 (55%)
	Hispanic	231 (47%)	41 (45%)
Geudes	Male	226 (46%)	63 (66%)
	Female	266 (5456)	31 (34%)*
Income	Low	230 (47%)	36 (38%)
	High	263 (53%)	58 (62%)
First Degree Family History of CHD No		397 (81%)	66 (69%)
	Yes	96 (19%)	28 (31%)*
BMI (median, IQR)		26 0 (23 7, 29 4)	26 (23 7, 29 0)
Diahenc	No	485 (98%)	92 (99%)
	Yes	8 (2%)	2 (1%)
Current Smokes	Yes	234 (48%)	44 (46%)
	No	258 (52%)	50 (54%)
Alcohol	Average	466 (95%)	89 (93%)
	High	27 (5%)	5 (7%)
Water Consumption	Low	185 (3956)	26 (27%)
	High	290 (61%)	68 (73%)
Physical Activity	Sedentary	334 (6956)	49 (51%)
	Active	151 (31%)	45 (49%)*
LDL (median, IQR)	1,758,0000	134.0 (108.0, 163.0)	146.0 (118.0, 178.8)*
HDL (median, IQR)		46.0 (38.0, 56.0)	44.0 (38.0,49.0)
Triglyzerides (median, IQR)		145.0 (102.0, 197.0)	142.0 (1130, 227.0)

Primary Analysis Continuous Exposure Variable	Univariate Model HR(95%CI)	Full Model HR(95%CI)	Adjusted Model HR(95%CI)
Arsenic Exposure TWA (15 ug/l)*	1.36 (1.1,1.8)	1.43 (1.11,1.84)	1.38 (1.09,1.78)
High Water Consumption		1.20 (0.77, 2.12)	
Female Gender		0.38 (0.22,0.61)	0.35 (0.19,0.53)
Hispanic Ethnicity		1.11 (0.70,1.84)	
Low Income		1.25 (0.69,2.10)	
Diabetic		2.23 (0.48,9.84)	
BMI (per 5.5 kg/m2)		0.82 (0.61,1.22)	
Primary Family Member with CHD		1.60 (0.89,2.82)	1.75 (1.07,2.88)
Sedentary Physical Activity		1.12 (0.72,1.83)	
Smoker		1.04 (0.70,1.71)	
High Alcohol Consumption		1.71 (0.69,4.37)	
Triglycerides (90ug/ dl)*		0.99 (0.67,1.39)	
Low Density Cholesterol (53ug/dl)*		1.49 (1.12,2,10)	1.40 (1.04,1.88)
High Density Cholesterol (17ug/dl)*		0.65 (0.39,1.02)	20.000000000000000000000000000000000000

Discussion

- •For every 15 μg/L increase in arsenic concentration in drinking water, the risk for CHD increased by 36 percent and across increasing levels of exposure, risk increased in dose-dependent fashion.
- Consistent results to research from high arsenic areas
- ■Understanding for CHD risk at arsenic exposure < 100ug/L
- Presents an association based on a complex exposure assessment

Limitations

- Does not account for other sources of arsenic exposure
- Potential misclassification bias given that 57% of the cohort was interviewed
- Arsenic exposure estimates were included in the proportional hazards model under the assumption of no error associated with the estimate generated from the kriging model

Conclusions

- Low-level inorganic arsenic in drinking water is associated with an increased risk for CHD
- This increased risk could have large public health implications
- The use of a comprehensive exposure assessment is critical for assessing exposure in diseases with complex pathways
- Future Directions
 - Investigate the increased risk with pre-clinical phases of CHD
 - Incorporate genetic and altered gene expression factors
 - Assess the clinically relevant exposure period