Use of an innovative meta-data search tool improves variable discovery in large-p data sets like the Simons Simplex Collection (SSC)

Leon Rozenblit, JD, PhD

Presenter Disclosures

Leon Rozenbli

- (1) The following personal financial relationships with commercial interests relevant to this presentation existed during the past 12 months:
- Employment by commercial entity, Prometheus Research, LLC
- Stock ownership,
 Prometheus Research, LLC

Objectives

- Describe the process for developing an agile software tool that promotes variable discovery in large data sets
- Assess the value of a technological approach for facilitating autism research and promoting data sharing
- Discuss how researchers who work with large, complex data sets can adopt this approach

Background

- Simons Foundation Autism Research Initiative (SFARI): Simons Simplex Collection (SSC)
 Data collected for over 2600 families with at least
- Data collected for over 2600 families with at least one child affected with Autism Spectrum Disorder (ASD)
- 13 sites, lots of attention to consistency
- Repository for genetic samples and phenotype data, other linked data

Problem

- The SSC contains many thousands of variables
- Challenging for researchers to identify variables relevant for their projects
- Possible solutions
 - Ontologies
 - Data Dictionary
- Variable browser approach

Google versus Yahoo

The second secon

Section and Microsoft Dock

STATE Section Middless

STATE Section Middless

State Section Middless

Section Microsoft Dock

Section Microsoft Dock

Section Microsoft Dock

Middless

Midd

What are you looking for? Verbal IQ Search

First Attempt

- Keep data in relational database
- Model meta-data as a separate schema in same database
- New data model tries to support complex search features (synonyms, concept weights)
- Resulted in poor performance

Simple Solution?

Solution

- Pretend each variable is a document
- Use standard document search techniques to find and rank variables

Solution

- Pretend each variable is a document
 Build a "search report" (a structured index) for each variable
 Build an output report for each variable
 - Store both reports as attributes in a searchable database where each row is a "variable"
- database where each row is a "variable"

 Use standard full-text search tools to find search report

 Run full-text search function on search report attribute

 Rank output

 Return corresponding stored output report attribute

CSV, XML, JSON

Challenges

- Search ranking algorithm tuning
 - Ranking by values
- Appropriate weighting for different kinds of tags (manual, meta-data-derived, value-derived)
- Recognizing variants of Boolean operators
- Stop word removal

Approach

- Agile software development
- Iterated over a 2 week cycle for 3 months
- Incorporated feedback from test users

Enabling Technology

- SQLite
- SQLite Full Text Search
- HTSQL

What Does HTSQL Get You?

- A relational database Web gateway:
 http://demo.htsql.org/school
 An advanced query language where the URI is the
- query
 /course?credits>3&department.school='eng'

- /school{name, count(program),count(department)}
 3 A REST-ful API for relational databases*
- A way to build maintainable web-apps quickly and cheaply
- A communication tool for developers, analysts, and end-users

Value of Approach

- Lightweight, easy to implement, low cost
- Fast!
- Accessible via the Web (via HTSQL)
- Improved usability
- Promotes data use, reduces support burden
- Potential for better data integration
- Can be used on top of $\underline{\text{any}}$ relational database

Implications for Public Health Practice

- Optimizes data retrieval
- Promotes interdisciplinary data usage
- Aids in analytical studies
- In use in SFARI Base, a data dissemination system
- Over 120 research projects
- Distributed more than 130,000 biospecimens

Acknowledgements

- Prometheus Research
 - Alexey Voronoy
 - Matthew Peddle
 - Clark EvansNaralys Sinanis
- Weill Cornell Medical College
 - Stephen Johnson

Different from Spotlight?		
	Document Search	Meta-Search
Prepare to Search	Scan file-system for documents	Scan a database for columns (across all tables)
	Build index entry for each document	Build index entry for each column (structure entry to support different search strategies, take into account related meta-data like table names, as well as values stored in each column)
Execute Search	Parse search string	Parse search string
	Compare terms in search string to index	Compare terms in search string to index
	Identify matching documents	Identify matching columns
	Rank matching documents	Rank matching columns (utilizing differential ranking weights from different search strategies)
	Return ranked list of documents	Return ranked list of "column reports"